<u>Lesson Plan</u> # Session: 2024-25 Name of the Assistant Professor: MS KUSUM Class: B.Sc. 5th semesterSubject: CHEMISTRY | | Week | Topic idea of crystal-field theory, | |--------------------------------|------|--| | Dates
25/07/2024 | 1 | Topic Unit 1: Limitations of valence bond theory, an elementary idea of crystal-field theory, Limitations of valence bond theory, an elementary idea of crystal-field theory, Crystal-field | | | _ | Limitations of valence bolid the production t | | to
27/07/2024 | | crystal field splitting in octahedral, | | 2//0//2021 | | complexes, factors and | | 01/08/2024 | 2 | crystal field splitting in octahedral, tetrahedral and square planar complexes, factors affecting the crystal-field | | to | | parameters and factors | | 03/08/2024 | | <u>Unit 2</u> A brief outline of thermodynamic stability of metal complexes and factors | | 05/00/202 | | as the 24 brief outline of thermodynamic stability | | 08/08/2024 | 3 | Unit ZA biler outlier | | to | | affecting the stability | | 10/08/2024 | | | | | | substitution reactions of square planar complexes of Pt(II) | | | | hetitution reactions of square planar complexes | | 15/08/2024 | 4 | | | to | | Unit 3:Types of magnetic behaviour, methods of determining magnetic | | 17/08/2024 | | haboviour methods of determining magnetic | | | | Tinit 3:Types of magnetic benaviour, | | 22/08/2024 | 5 | Susceptibility, spin-only formula | | to | | Susceptionity | | 24/08/2024 | | nagnetic magnetic | | | | off values, orbital contribution to magnetic | | | | L-S coupling, µcorrelation of s µand eff values, orbital contribution to magnetic | | 29/08/2024 | 6 | F-2 Conhuner Co | | to | | moments, | | 31/08/2024 | | | | 32.2.2. | | application of magnetic moment data for 3d-metal complexes | | | | ligation of magnetic moment data for 30-metal company | | | | application of mag- | | 05/09/2024 | 7 | | | 05/09/2024 | 7 | taking rules for d-d transition | | to | | of electronic transitions, selection rules for d-d transition | | to
07/09/2024 | | Unit 4: Types of electronic transitions, selection rules for d-d transition | | to
07/09/2024
12/09/2024 | | <u>Unit 4:</u> Types of electronic transitions, selection rules for d-d transition spectroscopic ground states, spectrochemical series. | | to
07/09/2024 | 8 | <u>Unit 4:</u> Types of electronic transitions, selection rules for d-d transition spectroscopic ground states, spectrochemical series. | ### PAPER - ORGANIC CHEMISTRY | Dates | Week | Topic | |--------------------------------|------|---| | 19/09/2024
to
21/09/2024 | 9 | Orgel-energy level diagram for d1 and d9 states, discussion of the electronic spectrum of [Ti(H2O) 6] 3 + complex ion. | | 26/09/2024
to
28/09/2024 | 10 | <u>Unit 1</u> , Classification and nomenclature. Monosaccharides, mechanism of osazone formation, interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. | | 03/09/2024
to
05/10/2024 | 11 | Configuration of monosaccharides. Erythro and threodiastereomers. Conversion of glucose into mannose. Formation of glycosides, ethers and esters. Determination of ring size of glucose and fructose. | | 10/10/2024
to
12/10/2024 | 12 | <u>Unit 2:</u> .Open chain and cyclic structure of D(+)-glucose & D(-) fructose. Mechanism of mutarotation. Structures of ribose and deoxyribose. | | 17/10/2024
to
19/10/2024 | 13 | An introduction to disaccharides (maltose, sucrose and lactose) and polysaccharides (starch and cellulose) without involving structure determination. | | 24/10/2024
to
26/10/2024 | 14 | Unit 3: MID TERM EXAM | | 07/11/2024
to
09/11/2024 | 15 | . <u>Unit 4</u> Organometallic Compounds Organomagnesium compounds: the Grignard reagents-formation, structure and chemical reactions. | | 14/11/2024
to
16/11/2024 | 16 | Organozinc compounds: formation and chemical reactions. Organolithium compounds: formation and chemical reactions. | | 21/11/2024
to
22/11/2024 | 17 | REVISION | #### <u>Lesson Plan</u> <u>Session: 2024-25</u> Name of the Assistant Professor: Ms Kusum Class: B.Sc. 3rd semesterSubject: Chemistry Paper 1:Inorganic | Dates | Week | Topic | |--------------------------------|------|---| | 22/07/2024
to
24/07/2024 | 1 | Unit 1: Werner's coordination theory, effective atomic | | 29/07/2024
to
31/08/2024 | 2 | chelates, nomenclature of coordination compounds | | 05/08/2024
to
07/08/2024 | 3 | <u>Unit 2:</u> isomerism in coordination compounds, valence bond theory of transition metal complexes | | 12/08/2024
to
14/08/2024 | 4 | Definition of transition elements, position in the periodic table, General characteristics & properites of d-block elements | | 19/08/2024
to
21/08/2024 | 5 | <u>Unit 3:</u> Comparison of properties of 3d elements with 4d & 5d elements with reference only to ionic radii, oxidation state | | 26/08/2024
to
28/08/2024 | 6 | magnetic and spectral properties and stereochemistry. Structures & properties of some compounds of transition elements – TiO 2 , VOCI 2 , FeCI 3 | | 02/09/2024
to
04/09/2024 | 7 | , CuCl 2 and Ni (CO) 4 | | 09/09/2024
to
11/09/2024 | 8 | <u>Unit 4:</u> Physical properties of a solvent, types of solvents and their general characteristics, reactions in non-aqueous solvents with reference to liquid NH3 and liquid SO2 | ## PAPER - PHYSICAL CHEMISTRY | Dates | Week | Topic | |--------------------------------|------|---| | 16/09/2024
to
18/09/2024 | 9 | Definition of thermodynamic terms: system, surrounding etc. Types of systems, intensive and extensive properties. State and path functions and their differentials. | | 23/09/2024
to
25/09/2024 | 10 | <u>Unit 1:</u> Thermodynamic process. Concept of heat and work. Zeroth Law of thermodynamics,. | | 30/09/2024
to
02/10/2024 | 11 | First law of thermodynamics: statement, definition of internal energy and enthalpy. Heat capacity, heat capacities at constant volume and pressure and their relationship | | 07/10/2024
to
09/10/2024 | 12 | <u>Unit 2:</u> Equilibrium constant and free energy, concept of chemical potential, Thermodynamic derivation of law of chemical equilibrium | | 14/10/2024
to
16/10/2024 | 13 | . Temperature dependence of equilibrium constant; Van't Hoff reaction isochore, Van't Hoff reaction isotherm. | | 21/10/2024
to
23/10/2024 | 14 | Unit 3: MID TERM EXAM | | 04/11/2024
to
06/11/2024 | 15 | . <u>Unit 4</u> Nernst distribution law – its thermodynamic derivation, | | 11/11/2024
to
13/11/2024 | 16 | Modification of distribution law when solute undergoes dissociation, association and chemical combination. | | 18/11/2024
to
20/11/2024 | 17 | REVISION | Signature #### Lesson Plan Session: 2024-25 Name of the Assistant Professor: MS KUSUM Class: B.Sc. 1th semesterSubject: CHEMISTRY Paper 1: DSC | Dates | Week | Topic | |--------------------------------|------|--| | 22/07/2024
to
24/07/2024 | 1 | Unit 1:. Dual behaviour of matter and radiation, de Broglie's relation, Heisenberg's uncertainty principle, concept of atomic orbitals, significance of quantum numbers, radial and angular wave functions, normal and orthogonal wave functions, | | 29/07/2024
to
31/08/2024 | 2 | Radial and angular wave functions, normal and significance of ψ and ψ 2, shapes of s, p, d and f orbitals, rules for filling electrons in significance of ψ and ψ 2, shapes of s, p, d and f orbitals, rules for filling electrons in | | 05/08/2024
to
07/08/2024 | 3 | various orbitals, effective nuclear charge, Slater's rules Significance of ψ and ψ2, shapes of s, p, d and f orbitals, rules for filling electrons in various orbitals, effective nuclear charge, Slater's rules various orbitals, effective nuclear charge, Slater's rules | | to
4/08/2024 | 4 | Classification of periodic table, definition of atomic and ionic radii, ionization energy, electron affinity and electronegativity, Trends in periodic table (in s and p block elements), Pauling, Mulliken, Allre Rachow and Mulliken Jaffe's electronegativity scale. | | 9/08/2024
to
1/08/2024 | 5 | | | 6/08/2024
to
8/08/2024 | 6 | <u>Unit 2:</u> Kinetic theory of gases, Maxwell's distribution of velocities and energies (derivation excluded), Calculation of root mean square velocity, average velocity and more probable velocity. Collision diameter, collision frequency and mean free path (derivation excluded). | | 2/09/2024
to | 7 | Collision diameter, collision frequency and Deviation of real gases from ideal gas behaviour, Derivation of van der Waal's equation of state, its applications in the calculated by the compression factor), Boyle's temperature (compression factor), | | /09/2024
/09/2024
to | 8 | | | Dates | | | |--------------------------------|------|--| | | - 1 | Week Topic | | 16/09/20
to
18/09/20 | 1 | Explanation of behaviour of real gases using van der Waal's equation | | 23/09/20
to
25/09/202 | | Classification of solids, Elements of symmetry and symmetry elements of crystals, definition of unit cell and space lattice, bravais lattices, | | 30/09/202
to
02/10/202 | 4 11 | Crystal system, Laws of crystallography – Law of constancy of interfacial angles, law of rationality of indices and law of symmetry, Miller Indices X-ray | | 07/10/202
to
09/10/202 | 4 | Diffraction by crystals, derivation of Bragg's law and Bragg's equation, Determination of crystal structure of NaCl and KCl. | | 14/10/2024
to
16/10/2024 | | <u>Unit 3</u> Localized and Delocalized chemical bond, van der Waal's interactions, resonance and its conditions and applications, hyperconjugation, inductive effect, electromeric effect and their comparison | | 21/10/2024
to
23/10/2024 | | <u>Unit 3:MID TERM EXAM</u> Types of isomerism, optical isomerism - elements of symmetry, molecular chirality, chiral and achiral molecules with two stereogenic centres, enantiomers and their properties, | | 04/11/2024
to
06/11/2024 | 15 | Diastereomers and their properties, erythro and threodiastereomers, meso compounds, Difference between conformations and configurations, Newmann and Sawhorse projections, Fischer and Flying wedge configurations | | 11/11/2024
to
13/11/2024 | 16 | Conformational isomerism – conformational analysis of ethane and n-butane, conformations of cyclohexane Relative and absolute configurations, sequence rules, R & S systems of nomenclature Geometric isomerism – cis, trans isomerism, E & Z system of nomenclature | | 18/11/2024
to
20/11/2024 | 17 | REVISION |